Can a citizen-science approach to collecting data assist the management of intermittent water supply in low-income and data-scarce settings?
Laure Sioné | Michael R. Templeton | Christian Onof | Olivia Jensen | Stephane Bressan | Sabitri Tripathi
Intermittent water supplies (IWS) can be both a public health threat and an expensive challenge to address for households, requiring reliance on either costly water storage solutions or alternative water supplies. Despite the fact that IWS are present all over the world, there remains a persistent lack of data on the operation and failures of urban water supply infrastructure in low-income countries. Local government and water utilities tend to be blamed for the poor management of the water supply, and yet there is no established method for reporting or measuring the continuity, reliability, or hours of supply of pipe water delivery. This makes it difficult for water utilities to estimate real economic losses or the investment needed to improve the water supply. Lack of evidence and data on the behaviour of IWS also impedes the development of tailored water management policies, leading to inefficient decision-making from the top down. This paper therefore proposes a method to address the knowledge and data gap on IWS in low-income settings, using citizen science coupled with mobile phone technology to collect data on IWS in a bottom-up approach. The approach was trialled in Kathmandu, Nepal and has since been adopted by the local water supply company.Agathokleous, A. and Christodoulou, S. (2016). The impact of intermittent water supply policies on urban water distribution networks. Procedia Engineering, 162, 204–211. <https://doi.org/10.1016/j.proeng.2016.11.041>
Ameyaw, E. E., Memon, F. A. and Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology – AQUA, 62(8), 552–562.
Bell Flow Systems. (2016). Flow and pressure recorder with built-in telemetry module. [Personal communication].
Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., Nelson, K. and Brown, J. (2017). Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environmental Science and Technology, 51(13), 7542–7551. <https://doi.org/10.1021/acs.est.7b01014>
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., de Bièvre, B., … and Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. In Frontiers in Earth Science (Vol. 2). Frontiers Media S.A. <https://doi.org/10.3389/feart.2014.00026>
Charalambous, B. and Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses. Water Intelligence Online. <https://doi.org/10.2166/9781780407074>
Dauda, S. A., Yacob, M. R. and Radam, A. (2015). Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment. Applied Water Science, 5(3), 253–259. <https://doi.org/10.1007/s13201-014-0186-6>
de Marchis, M., Fontanazza, C. M., Freni, G., la Loggia, G., Napoli, E. and Notaro, V. (2011). Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 13(3), 358. <https://doi.org/10.2166/hydro.2010.026>
de Marchis, M., Milici, B. and Freni, G. (2015). Pressure-discharge law of local tanks connected to a water distribution network: experimental and mathematical results. Water (Switzerland), 7(9), 4701–4723. <https://doi.org/10.3390/w7094701>
Galaitsi, S. E., Russell, R., Bishara, A., Durant, J. L., Bogle, J. and Huber-Lee, A. (2016). Intermittent domestic water supply: a critical review and analysis of causal-consequential pathways. Water (Switzerland), 8(7). <https://doi.org/10.3390/w8070274>
Gottipati, P. V. K. S. V. and Nanduri, U. v. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509–515. <https://doi.org/10.1111/wej.12065>
Guragai, B., Takizawa, S., Hashimoto, T. and Oguma, K. (2017). Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment, 599–600, 431–441. <https://doi.org/10.1016/j.scitotenv.2017.04.182>
Ilaya-Ayza, A. E., Martins, C., Campbell, E. and Izquierdo, J. (2017). Implementation of DMAs in intermittent water supply networks based on equity criteria. Water (Switzerland), 9(11). <https://doi.org/10.3390/w9110851>
Ingeduld, P., Pradhan, A., Svitak, Z. and Terrai, A. (2008). Modelling intermittent water supply systems with EPANET. Water Distribution Systems Analysis Symposium 2006. <https://doi.org/10.1061/40941(247)37>
International Telecommunication Union. (2020). Measuring digital development: facts and figures 2020. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf>
International Telecommunication Union. (2022). World telecommunication/ICT indicators database 2020. <https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx>
IWA Specialist Group on Intermittent Water Supply. (2020). Intermittent water supply: need for action, but what action? <https://iwa-network.org/learn/intermittent-water-supply-need-for-action-but-what-action/>
Kathmandu Upatyaka Khanepani Limited, Ministry of Water Supply and Government of Nepal. (2019). Land acquisition and involuntary resettlement due diligence report. <https://www.adb.org/sites/default/files/project-documents/34304/34304-043-sddr-en_0.pdf>
Kumpel, E., Sridharan, A., Kote, T., Olmos, A. and Parikh, T. (2012). NextDrop: using human observations to track water distribution. 6th USENIX/ACM Workshop on Networked Systems for Developing Regions. <https://www.usenix.org/system/files/conference/nsdr12/nsdr12-final13.pdf>
Kumpel, E., Woelfle-Erskine, C., Ray, I. and Nelson, K. L. (2016). Measuring household consumption and waste in unmetered, intermittent piped water systems. Water Resources Research 53(1), 1–14. <https://doi.org/10.1002/2016WR019702>
Lee, E. J. and Schwab, K. J. (2005). Deficiencies in drinking water distribution systems in developing countries. Journal of Water and Health, 3(2), 109–127. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16075938>
Lutaaya, M. and Echelai, G. A. (2021). Intermittent supply in a rapidly growing city: the case of Kampala. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-supply-in-a-rapidly-growing-city-the-case-of-kampala/>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12). <https://doi.org/10.3390/ijerph13121222>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2018). Reliability of water supplies in low and middle-income countries: a structured review of definitions and assessment criteria. Journal of Water Sanitation and Hygiene for Development, 8(2), 142–164. <https://doi.org/10.2166/washdev.2018.174>
Mohan, V. and Abhijith, G.R. (2021). Intermittent water supply interventions for India’s cities. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-water-supply-interventions-for-indias-cities/>
Mohapatra, S., Sargaonkar, A. and Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, 28(11), 3745–3759. <https://doi.org/10.1007/s11269-014-0707-y>
Mokssit, A., de Gouvello, B., Chazerain, A., Figuères, F. and Tassin, B. (2018). Building a methodology for assessing service quality under intermittent domestic water supply. Water (Switzerland), 10(9). <https://doi.org/10.3390/w10091164>
Nepal Central Bureau of Statistics. (2019). Nepal Statistical Year Book 2019 (17th edition). <https://cbs.gov.np/wp-content/upLoads/2021/01/Statistical-Year-Book-of-Nepal-2019.pdf>
Nepal Telecommunications Authority. (2022). MIS Report. <https://nta.gov.np/wp-content/uploads/2022/03/MIS-POUSH-2078.pdf>
Phillips, T. B., Ballard, H. L., Lewenstein, B. v. and Bonney, R. (2019). Engagement in science through citizen science: moving beyond data collection. Science Education, 103(3), 665–690. <https://doi.org/10.1002/sce.21501>
Rawas, F., Bain, R. and Kumpel, E. (2020). Comparing utility-reported hours of piped water supply to households’ experiences. Npj Clean Water, 3(1). <https://doi.org/10.1038/s41545-020-0053-y>
Ray, I., Billava, N., Burt, Z., Colford, J. M., Ercümen, A., Jayaramu, K. P., Kumpel, E., Nayak, N., Nelson, K. and Woelfle-Erskine, C. (2018). From intermittent to continuous water supply a household-level evaluation of water system reforms in Hubli-Dharwad. Economic and Political Weekly, 53(49). <https://escholarship.org/uc/item/1qt9t6gq>
Remigio, R. v., Rabello, R. S., Zulaika, G., Carvalho, M. S., Barrocas, P. R. G. and Lovasi, G. S. (2019). Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro. Journal of Water Sanitation and Hygiene for Development, 9(1), 80–89. <https://doi.org/10.2166/washdev.2018.082>
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. v., Krasny, M. E. and Bonney, R. (2012). Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2). <https://doi.org/10.5751/ES-04705-170229>
Taylor, D. D. J., Slocum, A. H. and Whittle, A. J. (2019). Demand satisfaction as a framework for understanding intermittent water supply systems. Water Resources Research, 55(7), 5217–5237. <https://doi.org/10.1029/2018WR024124>
Totsuka, S., Trifunovi, N. and Vairavamoorthy, K. (2004). Intermittent urban water supply under water starving situations. 30th WEDC International Conference, Vientiane, Lao PDR, 505–512. <https://repository.lboro.ac.uk/articles/conference_contribution/Intermittent_urban_water_supply_under_water_starving_situations/9595109/files/17235365.pdf>
Vairavamoorthy, K. (2021). Closing the SDG access gap – the challenge of intermittent supply. The Source. 22 February. <https://www.thesourcemagazine.org/closing-the-sdg-access-gap-the-challenge-of-intermittent-supply/>
Vásquez, W. F., Mozumder, P., Hernández-Arce, J. and Berrens, R. P. (2009). Willingness to pay for safe drinking water: evidence from Parral, Mexico. Journal of Environmental Management, 90(11), 3391–3400. <https://doi.org/10.1016/j.jenvman.2009.05.009>
WHO. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund. <http://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1>
Agathokleous, A. and Christodoulou, S. (2016). The impact of intermittent water supply policies on urban water distribution networks. Procedia Engineering, 162, 204–211. <https://doi.org/10.1016/j.proeng.2016.11.041>
Ameyaw, E. E., Memon, F. A. and Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology – AQUA, 62(8), 552–562.
Bell Flow Systems. (2016). Flow and pressure recorder with built-in telemetry module. [Personal communication].
Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., Nelson, K. and Brown, J. (2017). Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environmental Science and Technology, 51(13), 7542–7551. <https://doi.org/10.1021/acs.est.7b01014>
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., de Bièvre, B., … and Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. In Frontiers in Earth Science (Vol. 2). Frontiers Media S.A. <https://doi.org/10.3389/feart.2014.00026>
Charalambous, B. and Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses. Water Intelligence Online. <https://doi.org/10.2166/9781780407074>
Dauda, S. A., Yacob, M. R. and Radam, A. (2015). Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment. Applied Water Science, 5(3), 253–259. <https://doi.org/10.1007/s13201-014-0186-6>
de Marchis, M., Fontanazza, C. M., Freni, G., la Loggia, G., Napoli, E. and Notaro, V. (2011). Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 13(3), 358. <https://doi.org/10.2166/hydro.2010.026>
de Marchis, M., Milici, B. and Freni, G. (2015). Pressure-discharge law of local tanks connected to a water distribution network: experimental and mathematical results. Water (Switzerland), 7(9), 4701–4723. <https://doi.org/10.3390/w7094701>
Galaitsi, S. E., Russell, R., Bishara, A., Durant, J. L., Bogle, J. and Huber-Lee, A. (2016). Intermittent domestic water supply: a critical review and analysis of causal-consequential pathways. Water (Switzerland), 8(7). <https://doi.org/10.3390/w8070274>
Gottipati, P. V. K. S. V. and Nanduri, U. v. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509–515. <https://doi.org/10.1111/wej.12065>
Guragai, B., Takizawa, S., Hashimoto, T. and Oguma, K. (2017). Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment, 599–600, 431–441. <https://doi.org/10.1016/j.scitotenv.2017.04.182>
Ilaya-Ayza, A. E., Martins, C., Campbell, E. and Izquierdo, J. (2017). Implementation of DMAs in intermittent water supply networks based on equity criteria. Water (Switzerland), 9(11). <https://doi.org/10.3390/w9110851>
Ingeduld, P., Pradhan, A., Svitak, Z. and Terrai, A. (2008). Modelling intermittent water supply systems with EPANET. Water Distribution Systems Analysis Symposium 2006. <https://doi.org/10.1061/40941(247)37>
International Telecommunication Union. (2020). Measuring digital development: facts and figures 2020. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf>
International Telecommunication Union. (2022). World telecommunication/ICT indicators database 2020. <https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx>
IWA Specialist Group on Intermittent Water Supply. (2020). Intermittent water supply: need for action, but what action? <https://iwa-network.org/learn/intermittent-water-supply-need-for-action-but-what-action/>
Kathmandu Upatyaka Khanepani Limited, Ministry of Water Supply and Government of Nepal. (2019). Land acquisition and involuntary resettlement due diligence report. <https://www.adb.org/sites/default/files/project-documents/34304/34304-043-sddr-en_0.pdf>
Kumpel, E., Sridharan, A., Kote, T., Olmos, A. and Parikh, T. (2012). NextDrop: using human observations to track water distribution. 6th USENIX/ACM Workshop on Networked Systems for Developing Regions. <https://www.usenix.org/system/files/conference/nsdr12/nsdr12-final13.pdf>
Kumpel, E., Woelfle-Erskine, C., Ray, I. and Nelson, K. L. (2016). Measuring household consumption and waste in unmetered, intermittent piped water systems. Water Resources Research 53(1), 1–14. <https://doi.org/10.1002/2016WR019702>
Lee, E. J. and Schwab, K. J. (2005). Deficiencies in drinking water distribution systems in developing countries. Journal of Water and Health, 3(2), 109–127. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16075938>
Lutaaya, M. and Echelai, G. A. (2021). Intermittent supply in a rapidly growing city: the case of Kampala. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-supply-in-a-rapidly-growing-city-the-case-of-kampala/>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12). <https://doi.org/10.3390/ijerph13121222>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2018). Reliability of water supplies in low and middle-income countries: a structured review of definitions and assessment criteria. Journal of Water Sanitation and Hygiene for Development, 8(2), 142–164. <https://doi.org/10.2166/washdev.2018.174>
Mohan, V. and Abhijith, G.R. (2021). Intermittent water supply interventions for India’s cities. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-water-supply-interventions-for-indias-cities/>
Mohapatra, S., Sargaonkar, A. and Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, 28(11), 3745–3759. <https://doi.org/10.1007/s11269-014-0707-y>
Mokssit, A., de Gouvello, B., Chazerain, A., Figuères, F. and Tassin, B. (2018). Building a methodology for assessing service quality under intermittent domestic water supply. Water (Switzerland), 10(9). <https://doi.org/10.3390/w10091164>
Nepal Central Bureau of Statistics. (2019). Nepal Statistical Year Book 2019 (17th edition). <https://cbs.gov.np/wp-content/upLoads/2021/01/Statistical-Year-Book-of-Nepal-2019.pdf>
Nepal Telecommunications Authority. (2022). MIS Report. <https://nta.gov.np/wp-content/uploads/2022/03/MIS-POUSH-2078.pdf>
Phillips, T. B., Ballard, H. L., Lewenstein, B. v. and Bonney, R. (2019). Engagement in science through citizen science: moving beyond data collection. Science Education, 103(3), 665–690. <https://doi.org/10.1002/sce.21501>
Rawas, F., Bain, R. and Kumpel, E. (2020). Comparing utility-reported hours of piped water supply to households’ experiences. Npj Clean Water, 3(1). <https://doi.org/10.1038/s41545-020-0053-y>
Ray, I., Billava, N., Burt, Z., Colford, J. M., Ercümen, A., Jayaramu, K. P., Kumpel, E., Nayak, N., Nelson, K. and Woelfle-Erskine, C. (2018). From intermittent to continuous water supply a household-level evaluation of water system reforms in Hubli-Dharwad. Economic and Political Weekly, 53(49). <https://escholarship.org/uc/item/1qt9t6gq>
Remigio, R. v., Rabello, R. S., Zulaika, G., Carvalho, M. S., Barrocas, P. R. G. and Lovasi, G. S. (2019). Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro. Journal of Water Sanitation and Hygiene for Development, 9(1), 80–89. <https://doi.org/10.2166/washdev.2018.082>
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. v., Krasny, M. E. and Bonney, R. (2012). Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2). <https://doi.org/10.5751/ES-04705-170229>
Taylor, D. D. J., Slocum, A. H. and Whittle, A. J. (2019). Demand satisfaction as a framework for understanding intermittent water supply systems. Water Resources Research, 55(7), 5217–5237. <https://doi.org/10.1029/2018WR024124>
Totsuka, S., Trifunovi, N. and Vairavamoorthy, K. (2004). Intermittent urban water supply under water starving situations. 30th WEDC International Conference, Vientiane, Lao PDR, 505–512. <https://repository.lboro.ac.uk/articles/conference_contribution/Intermittent_urban_water_supply_under_water_starving_situations/9595109/files/17235365.pdf>
Vairavamoorthy, K. (2021). Closing the SDG access gap – the challenge of intermittent supply. The Source. 22 February. <https://www.thesourcemagazine.org/closing-the-sdg-access-gap-the-challenge-of-intermittent-supply/>
Vásquez, W. F., Mozumder, P., Hernández-Arce, J. and Berrens, R. P. (2009). Willingness to pay for safe drinking water: evidence from Parral, Mexico. Journal of Environmental Management, 90(11), 3391–3400. <https://doi.org/10.1016/j.jenvman.2009.05.009>
WHO. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund. <http://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1>
Agathokleous, A. and Christodoulou, S. (2016). The impact of intermittent water supply policies on urban water distribution networks. Procedia Engineering, 162, 204–211. <https://doi.org/10.1016/j.proeng.2016.11.041>
Ameyaw, E. E., Memon, F. A. and Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology – AQUA, 62(8), 552–562.
Bell Flow Systems. (2016). Flow and pressure recorder with built-in telemetry module. [Personal communication].
Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., Nelson, K. and Brown, J. (2017). Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environmental Science and Technology, 51(13), 7542–7551. <https://doi.org/10.1021/acs.est.7b01014>
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., de Bièvre, B., … and Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. In Frontiers in Earth Science (Vol. 2). Frontiers Media S.A. <https://doi.org/10.3389/feart.2014.00026>
Charalambous, B. and Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses. Water Intelligence Online. <https://doi.org/10.2166/9781780407074>
Dauda, S. A., Yacob, M. R. and Radam, A. (2015). Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment. Applied Water Science, 5(3), 253–259. <https://doi.org/10.1007/s13201-014-0186-6>
de Marchis, M., Fontanazza, C. M., Freni, G., la Loggia, G., Napoli, E. and Notaro, V. (2011). Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 13(3), 358. <https://doi.org/10.2166/hydro.2010.026>
de Marchis, M., Milici, B. and Freni, G. (2015). Pressure-discharge law of local tanks connected to a water distribution network: experimental and mathematical results. Water (Switzerland), 7(9), 4701–4723. <https://doi.org/10.3390/w7094701>
Galaitsi, S. E., Russell, R., Bishara, A., Durant, J. L., Bogle, J. and Huber-Lee, A. (2016). Intermittent domestic water supply: a critical review and analysis of causal-consequential pathways. Water (Switzerland), 8(7). <https://doi.org/10.3390/w8070274>
Gottipati, P. V. K. S. V. and Nanduri, U. v. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509–515. <https://doi.org/10.1111/wej.12065>
Guragai, B., Takizawa, S., Hashimoto, T. and Oguma, K. (2017). Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment, 599–600, 431–441. <https://doi.org/10.1016/j.scitotenv.2017.04.182>
Ilaya-Ayza, A. E., Martins, C., Campbell, E. and Izquierdo, J. (2017). Implementation of DMAs in intermittent water supply networks based on equity criteria. Water (Switzerland), 9(11). <https://doi.org/10.3390/w9110851>
Ingeduld, P., Pradhan, A., Svitak, Z. and Terrai, A. (2008). Modelling intermittent water supply systems with EPANET. Water Distribution Systems Analysis Symposium 2006. <https://doi.org/10.1061/40941(247)37>
International Telecommunication Union. (2020). Measuring digital development: facts and figures 2020. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf>
International Telecommunication Union. (2022). World telecommunication/ICT indicators database 2020. <https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx>
IWA Specialist Group on Intermittent Water Supply. (2020). Intermittent water supply: need for action, but what action? <https://iwa-network.org/learn/intermittent-water-supply-need-for-action-but-what-action/>
Kathmandu Upatyaka Khanepani Limited, Ministry of Water Supply and Government of Nepal. (2019). Land acquisition and involuntary resettlement due diligence report. <https://www.adb.org/sites/default/files/project-documents/34304/34304-043-sddr-en_0.pdf>
Kumpel, E., Sridharan, A., Kote, T., Olmos, A. and Parikh, T. (2012). NextDrop: using human observations to track water distribution. 6th USENIX/ACM Workshop on Networked Systems for Developing Regions. <https://www.usenix.org/system/files/conference/nsdr12/nsdr12-final13.pdf>
Kumpel, E., Woelfle-Erskine, C., Ray, I. and Nelson, K. L. (2016). Measuring household consumption and waste in unmetered, intermittent piped water systems. Water Resources Research 53(1), 1–14. <https://doi.org/10.1002/2016WR019702>
Lee, E. J. and Schwab, K. J. (2005). Deficiencies in drinking water distribution systems in developing countries. Journal of Water and Health, 3(2), 109–127. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16075938>
Lutaaya, M. and Echelai, G. A. (2021). Intermittent supply in a rapidly growing city: the case of Kampala. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-supply-in-a-rapidly-growing-city-the-case-of-kampala/>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12). <https://doi.org/10.3390/ijerph13121222>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2018). Reliability of water supplies in low and middle-income countries: a structured review of definitions and assessment criteria. Journal of Water Sanitation and Hygiene for Development, 8(2), 142–164. <https://doi.org/10.2166/washdev.2018.174>
Mohan, V. and Abhijith, G.R. (2021). Intermittent water supply interventions for India’s cities. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-water-supply-interventions-for-indias-cities/>
Mohapatra, S., Sargaonkar, A. and Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, 28(11), 3745–3759. <https://doi.org/10.1007/s11269-014-0707-y>
Mokssit, A., de Gouvello, B., Chazerain, A., Figuères, F. and Tassin, B. (2018). Building a methodology for assessing service quality under intermittent domestic water supply. Water (Switzerland), 10(9). <https://doi.org/10.3390/w10091164>
Nepal Central Bureau of Statistics. (2019). Nepal Statistical Year Book 2019 (17th edition). <https://cbs.gov.np/wp-content/upLoads/2021/01/Statistical-Year-Book-of-Nepal-2019.pdf>
Nepal Telecommunications Authority. (2022). MIS Report. <https://nta.gov.np/wp-content/uploads/2022/03/MIS-POUSH-2078.pdf>
Phillips, T. B., Ballard, H. L., Lewenstein, B. v. and Bonney, R. (2019). Engagement in science through citizen science: moving beyond data collection. Science Education, 103(3), 665–690. <https://doi.org/10.1002/sce.21501>
Rawas, F., Bain, R. and Kumpel, E. (2020). Comparing utility-reported hours of piped water supply to households’ experiences. Npj Clean Water, 3(1). <https://doi.org/10.1038/s41545-020-0053-y>
Ray, I., Billava, N., Burt, Z., Colford, J. M., Ercümen, A., Jayaramu, K. P., Kumpel, E., Nayak, N., Nelson, K. and Woelfle-Erskine, C. (2018). From intermittent to continuous water supply a household-level evaluation of water system reforms in Hubli-Dharwad. Economic and Political Weekly, 53(49). <https://escholarship.org/uc/item/1qt9t6gq>
Remigio, R. v., Rabello, R. S., Zulaika, G., Carvalho, M. S., Barrocas, P. R. G. and Lovasi, G. S. (2019). Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro. Journal of Water Sanitation and Hygiene for Development, 9(1), 80–89. <https://doi.org/10.2166/washdev.2018.082>
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. v., Krasny, M. E. and Bonney, R. (2012). Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2). <https://doi.org/10.5751/ES-04705-170229>
Taylor, D. D. J., Slocum, A. H. and Whittle, A. J. (2019). Demand satisfaction as a framework for understanding intermittent water supply systems. Water Resources Research, 55(7), 5217–5237. <https://doi.org/10.1029/2018WR024124>
Totsuka, S., Trifunovi, N. and Vairavamoorthy, K. (2004). Intermittent urban water supply under water starving situations. 30th WEDC International Conference, Vientiane, Lao PDR, 505–512. <https://repository.lboro.ac.uk/articles/conference_contribution/Intermittent_urban_water_supply_under_water_starving_situations/9595109/files/17235365.pdf>
Vairavamoorthy, K. (2021). Closing the SDG access gap – the challenge of intermittent supply. The Source. 22 February. <https://www.thesourcemagazine.org/closing-the-sdg-access-gap-the-challenge-of-intermittent-supply/>
Vásquez, W. F., Mozumder, P., Hernández-Arce, J. and Berrens, R. P. (2009). Willingness to pay for safe drinking water: evidence from Parral, Mexico. Journal of Environmental Management, 90(11), 3391–3400. <https://doi.org/10.1016/j.jenvman.2009.05.009>
WHO. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund. <http://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1>
Agathokleous, A. and Christodoulou, S. (2016). The impact of intermittent water supply policies on urban water distribution networks. Procedia Engineering, 162, 204–211. <https://doi.org/10.1016/j.proeng.2016.11.041>
Ameyaw, E. E., Memon, F. A. and Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology – AQUA, 62(8), 552–562.
Bell Flow Systems. (2016). Flow and pressure recorder with built-in telemetry module. [Personal communication].
Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., Nelson, K. and Brown, J. (2017). Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environmental Science and Technology, 51(13), 7542–7551. <https://doi.org/10.1021/acs.est.7b01014>
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., de Bièvre, B., … and Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. In Frontiers in Earth Science (Vol. 2). Frontiers Media S.A. <https://doi.org/10.3389/feart.2014.00026>
Charalambous, B. and Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses. Water Intelligence Online. <https://doi.org/10.2166/9781780407074>
Dauda, S. A., Yacob, M. R. and Radam, A. (2015). Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment. Applied Water Science, 5(3), 253–259. <https://doi.org/10.1007/s13201-014-0186-6>
de Marchis, M., Fontanazza, C. M., Freni, G., la Loggia, G., Napoli, E. and Notaro, V. (2011). Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 13(3), 358. <https://doi.org/10.2166/hydro.2010.026>
de Marchis, M., Milici, B. and Freni, G. (2015). Pressure-discharge law of local tanks connected to a water distribution network: experimental and mathematical results. Water (Switzerland), 7(9), 4701–4723. <https://doi.org/10.3390/w7094701>
Galaitsi, S. E., Russell, R., Bishara, A., Durant, J. L., Bogle, J. and Huber-Lee, A. (2016). Intermittent domestic water supply: a critical review and analysis of causal-consequential pathways. Water (Switzerland), 8(7). <https://doi.org/10.3390/w8070274>
Gottipati, P. V. K. S. V. and Nanduri, U. v. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509–515. <https://doi.org/10.1111/wej.12065>
Guragai, B., Takizawa, S., Hashimoto, T. and Oguma, K. (2017). Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment, 599–600, 431–441. <https://doi.org/10.1016/j.scitotenv.2017.04.182>
Ilaya-Ayza, A. E., Martins, C., Campbell, E. and Izquierdo, J. (2017). Implementation of DMAs in intermittent water supply networks based on equity criteria. Water (Switzerland), 9(11). <https://doi.org/10.3390/w9110851>
Ingeduld, P., Pradhan, A., Svitak, Z. and Terrai, A. (2008). Modelling intermittent water supply systems with EPANET. Water Distribution Systems Analysis Symposium 2006. <https://doi.org/10.1061/40941(247)37>
International Telecommunication Union. (2020). Measuring digital development: facts and figures 2020. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf>
International Telecommunication Union. (2022). World telecommunication/ICT indicators database 2020. <https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx>
IWA Specialist Group on Intermittent Water Supply. (2020). Intermittent water supply: need for action, but what action? <https://iwa-network.org/learn/intermittent-water-supply-need-for-action-but-what-action/>
Kathmandu Upatyaka Khanepani Limited, Ministry of Water Supply and Government of Nepal. (2019). Land acquisition and involuntary resettlement due diligence report. <https://www.adb.org/sites/default/files/project-documents/34304/34304-043-sddr-en_0.pdf>
Kumpel, E., Sridharan, A., Kote, T., Olmos, A. and Parikh, T. (2012). NextDrop: using human observations to track water distribution. 6th USENIX/ACM Workshop on Networked Systems for Developing Regions. <https://www.usenix.org/system/files/conference/nsdr12/nsdr12-final13.pdf>
Kumpel, E., Woelfle-Erskine, C., Ray, I. and Nelson, K. L. (2016). Measuring household consumption and waste in unmetered, intermittent piped water systems. Water Resources Research 53(1), 1–14. <https://doi.org/10.1002/2016WR019702>
Lee, E. J. and Schwab, K. J. (2005). Deficiencies in drinking water distribution systems in developing countries. Journal of Water and Health, 3(2), 109–127. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16075938>
Lutaaya, M. and Echelai, G. A. (2021). Intermittent supply in a rapidly growing city: the case of Kampala. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-supply-in-a-rapidly-growing-city-the-case-of-kampala/>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12). <https://doi.org/10.3390/ijerph13121222>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2018). Reliability of water supplies in low and middle-income countries: a structured review of definitions and assessment criteria. Journal of Water Sanitation and Hygiene for Development, 8(2), 142–164. <https://doi.org/10.2166/washdev.2018.174>
Mohan, V. and Abhijith, G.R. (2021). Intermittent water supply interventions for India’s cities. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-water-supply-interventions-for-indias-cities/>
Mohapatra, S., Sargaonkar, A. and Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, 28(11), 3745–3759. <https://doi.org/10.1007/s11269-014-0707-y>
Mokssit, A., de Gouvello, B., Chazerain, A., Figuères, F. and Tassin, B. (2018). Building a methodology for assessing service quality under intermittent domestic water supply. Water (Switzerland), 10(9). <https://doi.org/10.3390/w10091164>
Nepal Central Bureau of Statistics. (2019). Nepal Statistical Year Book 2019 (17th edition). <https://cbs.gov.np/wp-content/upLoads/2021/01/Statistical-Year-Book-of-Nepal-2019.pdf>
Nepal Telecommunications Authority. (2022). MIS Report. <https://nta.gov.np/wp-content/uploads/2022/03/MIS-POUSH-2078.pdf>
Phillips, T. B., Ballard, H. L., Lewenstein, B. v. and Bonney, R. (2019). Engagement in science through citizen science: moving beyond data collection. Science Education, 103(3), 665–690. <https://doi.org/10.1002/sce.21501>
Rawas, F., Bain, R. and Kumpel, E. (2020). Comparing utility-reported hours of piped water supply to households’ experiences. Npj Clean Water, 3(1). <https://doi.org/10.1038/s41545-020-0053-y>
Ray, I., Billava, N., Burt, Z., Colford, J. M., Ercümen, A., Jayaramu, K. P., Kumpel, E., Nayak, N., Nelson, K. and Woelfle-Erskine, C. (2018). From intermittent to continuous water supply a household-level evaluation of water system reforms in Hubli-Dharwad. Economic and Political Weekly, 53(49). <https://escholarship.org/uc/item/1qt9t6gq>
Remigio, R. v., Rabello, R. S., Zulaika, G., Carvalho, M. S., Barrocas, P. R. G. and Lovasi, G. S. (2019). Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro. Journal of Water Sanitation and Hygiene for Development, 9(1), 80–89. <https://doi.org/10.2166/washdev.2018.082>
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. v., Krasny, M. E. and Bonney, R. (2012). Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2). <https://doi.org/10.5751/ES-04705-170229>
Taylor, D. D. J., Slocum, A. H. and Whittle, A. J. (2019). Demand satisfaction as a framework for understanding intermittent water supply systems. Water Resources Research, 55(7), 5217–5237. <https://doi.org/10.1029/2018WR024124>
Totsuka, S., Trifunovi, N. and Vairavamoorthy, K. (2004). Intermittent urban water supply under water starving situations. 30th WEDC International Conference, Vientiane, Lao PDR, 505–512. <https://repository.lboro.ac.uk/articles/conference_contribution/Intermittent_urban_water_supply_under_water_starving_situations/9595109/files/17235365.pdf>
Vairavamoorthy, K. (2021). Closing the SDG access gap – the challenge of intermittent supply. The Source. 22 February. <https://www.thesourcemagazine.org/closing-the-sdg-access-gap-the-challenge-of-intermittent-supply/>
Vásquez, W. F., Mozumder, P., Hernández-Arce, J. and Berrens, R. P. (2009). Willingness to pay for safe drinking water: evidence from Parral, Mexico. Journal of Environmental Management, 90(11), 3391–3400. <https://doi.org/10.1016/j.jenvman.2009.05.009>
WHO. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund. <http://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1>
Agathokleous, A. and Christodoulou, S. (2016). The impact of intermittent water supply policies on urban water distribution networks. Procedia Engineering, 162, 204–211. <https://doi.org/10.1016/j.proeng.2016.11.041>
Ameyaw, E. E., Memon, F. A. and Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology – AQUA, 62(8), 552–562.
Bell Flow Systems. (2016). Flow and pressure recorder with built-in telemetry module. [Personal communication].
Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., Nelson, K. and Brown, J. (2017). Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environmental Science and Technology, 51(13), 7542–7551. <https://doi.org/10.1021/acs.est.7b01014>
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., de Bièvre, B., … and Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. In Frontiers in Earth Science (Vol. 2). Frontiers Media S.A. <https://doi.org/10.3389/feart.2014.00026>
Charalambous, B. and Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses. Water Intelligence Online. <https://doi.org/10.2166/9781780407074>
Dauda, S. A., Yacob, M. R. and Radam, A. (2015). Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment. Applied Water Science, 5(3), 253–259. <https://doi.org/10.1007/s13201-014-0186-6>
de Marchis, M., Fontanazza, C. M., Freni, G., la Loggia, G., Napoli, E. and Notaro, V. (2011). Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 13(3), 358. <https://doi.org/10.2166/hydro.2010.026>
de Marchis, M., Milici, B. and Freni, G. (2015). Pressure-discharge law of local tanks connected to a water distribution network: experimental and mathematical results. Water (Switzerland), 7(9), 4701–4723. <https://doi.org/10.3390/w7094701>
Galaitsi, S. E., Russell, R., Bishara, A., Durant, J. L., Bogle, J. and Huber-Lee, A. (2016). Intermittent domestic water supply: a critical review and analysis of causal-consequential pathways. Water (Switzerland), 8(7). <https://doi.org/10.3390/w8070274>
Gottipati, P. V. K. S. V. and Nanduri, U. v. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509–515. <https://doi.org/10.1111/wej.12065>
Guragai, B., Takizawa, S., Hashimoto, T. and Oguma, K. (2017). Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment, 599–600, 431–441. <https://doi.org/10.1016/j.scitotenv.2017.04.182>
Ilaya-Ayza, A. E., Martins, C., Campbell, E. and Izquierdo, J. (2017). Implementation of DMAs in intermittent water supply networks based on equity criteria. Water (Switzerland), 9(11). <https://doi.org/10.3390/w9110851>
Ingeduld, P., Pradhan, A., Svitak, Z. and Terrai, A. (2008). Modelling intermittent water supply systems with EPANET. Water Distribution Systems Analysis Symposium 2006. <https://doi.org/10.1061/40941(247)37>
International Telecommunication Union. (2020). Measuring digital development: facts and figures 2020. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf>
International Telecommunication Union. (2022). World telecommunication/ICT indicators database 2020. <https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx>
IWA Specialist Group on Intermittent Water Supply. (2020). Intermittent water supply: need for action, but what action? <https://iwa-network.org/learn/intermittent-water-supply-need-for-action-but-what-action/>
Kathmandu Upatyaka Khanepani Limited, Ministry of Water Supply and Government of Nepal. (2019). Land acquisition and involuntary resettlement due diligence report. <https://www.adb.org/sites/default/files/project-documents/34304/34304-043-sddr-en_0.pdf>
Kumpel, E., Sridharan, A., Kote, T., Olmos, A. and Parikh, T. (2012). NextDrop: using human observations to track water distribution. 6th USENIX/ACM Workshop on Networked Systems for Developing Regions. <https://www.usenix.org/system/files/conference/nsdr12/nsdr12-final13.pdf>
Kumpel, E., Woelfle-Erskine, C., Ray, I. and Nelson, K. L. (2016). Measuring household consumption and waste in unmetered, intermittent piped water systems. Water Resources Research 53(1), 1–14. <https://doi.org/10.1002/2016WR019702>
Lee, E. J. and Schwab, K. J. (2005). Deficiencies in drinking water distribution systems in developing countries. Journal of Water and Health, 3(2), 109–127. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16075938>
Lutaaya, M. and Echelai, G. A. (2021). Intermittent supply in a rapidly growing city: the case of Kampala. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-supply-in-a-rapidly-growing-city-the-case-of-kampala/>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12). <https://doi.org/10.3390/ijerph13121222>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2018). Reliability of water supplies in low and middle-income countries: a structured review of definitions and assessment criteria. Journal of Water Sanitation and Hygiene for Development, 8(2), 142–164. <https://doi.org/10.2166/washdev.2018.174>
Mohan, V. and Abhijith, G.R. (2021). Intermittent water supply interventions for India’s cities. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-water-supply-interventions-for-indias-cities/>
Mohapatra, S., Sargaonkar, A. and Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, 28(11), 3745–3759. <https://doi.org/10.1007/s11269-014-0707-y>
Mokssit, A., de Gouvello, B., Chazerain, A., Figuères, F. and Tassin, B. (2018). Building a methodology for assessing service quality under intermittent domestic water supply. Water (Switzerland), 10(9). <https://doi.org/10.3390/w10091164>
Nepal Central Bureau of Statistics. (2019). Nepal Statistical Year Book 2019 (17th edition). <https://cbs.gov.np/wp-content/upLoads/2021/01/Statistical-Year-Book-of-Nepal-2019.pdf>
Nepal Telecommunications Authority. (2022). MIS Report. <https://nta.gov.np/wp-content/uploads/2022/03/MIS-POUSH-2078.pdf>
Phillips, T. B., Ballard, H. L., Lewenstein, B. v. and Bonney, R. (2019). Engagement in science through citizen science: moving beyond data collection. Science Education, 103(3), 665–690. <https://doi.org/10.1002/sce.21501>
Rawas, F., Bain, R. and Kumpel, E. (2020). Comparing utility-reported hours of piped water supply to households’ experiences. Npj Clean Water, 3(1). <https://doi.org/10.1038/s41545-020-0053-y>
Ray, I., Billava, N., Burt, Z., Colford, J. M., Ercümen, A., Jayaramu, K. P., Kumpel, E., Nayak, N., Nelson, K. and Woelfle-Erskine, C. (2018). From intermittent to continuous water supply a household-level evaluation of water system reforms in Hubli-Dharwad. Economic and Political Weekly, 53(49). <https://escholarship.org/uc/item/1qt9t6gq>
Remigio, R. v., Rabello, R. S., Zulaika, G., Carvalho, M. S., Barrocas, P. R. G. and Lovasi, G. S. (2019). Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro. Journal of Water Sanitation and Hygiene for Development, 9(1), 80–89. <https://doi.org/10.2166/washdev.2018.082>
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. v., Krasny, M. E. and Bonney, R. (2012). Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2). <https://doi.org/10.5751/ES-04705-170229>
Taylor, D. D. J., Slocum, A. H. and Whittle, A. J. (2019). Demand satisfaction as a framework for understanding intermittent water supply systems. Water Resources Research, 55(7), 5217–5237. <https://doi.org/10.1029/2018WR024124>
Totsuka, S., Trifunovi, N. and Vairavamoorthy, K. (2004). Intermittent urban water supply under water starving situations. 30th WEDC International Conference, Vientiane, Lao PDR, 505–512. <https://repository.lboro.ac.uk/articles/conference_contribution/Intermittent_urban_water_supply_under_water_starving_situations/9595109/files/17235365.pdf>
Vairavamoorthy, K. (2021). Closing the SDG access gap – the challenge of intermittent supply. The Source. 22 February. <https://www.thesourcemagazine.org/closing-the-sdg-access-gap-the-challenge-of-intermittent-supply/>
Vásquez, W. F., Mozumder, P., Hernández-Arce, J. and Berrens, R. P. (2009). Willingness to pay for safe drinking water: evidence from Parral, Mexico. Journal of Environmental Management, 90(11), 3391–3400. <https://doi.org/10.1016/j.jenvman.2009.05.009>
WHO. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund. <http://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1>
Agathokleous, A. and Christodoulou, S. (2016). The impact of intermittent water supply policies on urban water distribution networks. Procedia Engineering, 162, 204–211. <https://doi.org/10.1016/j.proeng.2016.11.041>
Ameyaw, E. E., Memon, F. A. and Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology – AQUA, 62(8), 552–562.
Bell Flow Systems. (2016). Flow and pressure recorder with built-in telemetry module. [Personal communication].
Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., Nelson, K. and Brown, J. (2017). Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environmental Science and Technology, 51(13), 7542–7551. <https://doi.org/10.1021/acs.est.7b01014>
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., de Bièvre, B., … and Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. In Frontiers in Earth Science (Vol. 2). Frontiers Media S.A. <https://doi.org/10.3389/feart.2014.00026>
Charalambous, B. and Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses. Water Intelligence Online. <https://doi.org/10.2166/9781780407074>
Dauda, S. A., Yacob, M. R. and Radam, A. (2015). Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment. Applied Water Science, 5(3), 253–259. <https://doi.org/10.1007/s13201-014-0186-6>
de Marchis, M., Fontanazza, C. M., Freni, G., la Loggia, G., Napoli, E. and Notaro, V. (2011). Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 13(3), 358. <https://doi.org/10.2166/hydro.2010.026>
de Marchis, M., Milici, B. and Freni, G. (2015). Pressure-discharge law of local tanks connected to a water distribution network: experimental and mathematical results. Water (Switzerland), 7(9), 4701–4723. <https://doi.org/10.3390/w7094701>
Galaitsi, S. E., Russell, R., Bishara, A., Durant, J. L., Bogle, J. and Huber-Lee, A. (2016). Intermittent domestic water supply: a critical review and analysis of causal-consequential pathways. Water (Switzerland), 8(7). <https://doi.org/10.3390/w8070274>
Gottipati, P. V. K. S. V. and Nanduri, U. v. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509–515. <https://doi.org/10.1111/wej.12065>
Guragai, B., Takizawa, S., Hashimoto, T. and Oguma, K. (2017). Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment, 599–600, 431–441. <https://doi.org/10.1016/j.scitotenv.2017.04.182>
Ilaya-Ayza, A. E., Martins, C., Campbell, E. and Izquierdo, J. (2017). Implementation of DMAs in intermittent water supply networks based on equity criteria. Water (Switzerland), 9(11). <https://doi.org/10.3390/w9110851>
Ingeduld, P., Pradhan, A., Svitak, Z. and Terrai, A. (2008). Modelling intermittent water supply systems with EPANET. Water Distribution Systems Analysis Symposium 2006. <https://doi.org/10.1061/40941(247)37>
International Telecommunication Union. (2020). Measuring digital development: facts and figures 2020. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf>
International Telecommunication Union. (2022). World telecommunication/ICT indicators database 2020. <https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx>
IWA Specialist Group on Intermittent Water Supply. (2020). Intermittent water supply: need for action, but what action? <https://iwa-network.org/learn/intermittent-water-supply-need-for-action-but-what-action/>
Kathmandu Upatyaka Khanepani Limited, Ministry of Water Supply and Government of Nepal. (2019). Land acquisition and involuntary resettlement due diligence report. <https://www.adb.org/sites/default/files/project-documents/34304/34304-043-sddr-en_0.pdf>
Kumpel, E., Sridharan, A., Kote, T., Olmos, A. and Parikh, T. (2012). NextDrop: using human observations to track water distribution. 6th USENIX/ACM Workshop on Networked Systems for Developing Regions. <https://www.usenix.org/system/files/conference/nsdr12/nsdr12-final13.pdf>
Kumpel, E., Woelfle-Erskine, C., Ray, I. and Nelson, K. L. (2016). Measuring household consumption and waste in unmetered, intermittent piped water systems. Water Resources Research 53(1), 1–14. <https://doi.org/10.1002/2016WR019702>
Lee, E. J. and Schwab, K. J. (2005). Deficiencies in drinking water distribution systems in developing countries. Journal of Water and Health, 3(2), 109–127. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16075938>
Lutaaya, M. and Echelai, G. A. (2021). Intermittent supply in a rapidly growing city: the case of Kampala. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-supply-in-a-rapidly-growing-city-the-case-of-kampala/>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12). <https://doi.org/10.3390/ijerph13121222>
Majuru, B., Suhrcke, M. and Hunter, P. R. (2018). Reliability of water supplies in low and middle-income countries: a structured review of definitions and assessment criteria. Journal of Water Sanitation and Hygiene for Development, 8(2), 142–164. <https://doi.org/10.2166/washdev.2018.174>
Mohan, V. and Abhijith, G.R. (2021). Intermittent water supply interventions for India’s cities. The Source. 22 February. <https://www.thesourcemagazine.org/intermittent-water-supply-interventions-for-indias-cities/>
Mohapatra, S., Sargaonkar, A. and Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, 28(11), 3745–3759. <https://doi.org/10.1007/s11269-014-0707-y>
Mokssit, A., de Gouvello, B., Chazerain, A., Figuères, F. and Tassin, B. (2018). Building a methodology for assessing service quality under intermittent domestic water supply. Water (Switzerland), 10(9). <https://doi.org/10.3390/w10091164>
Nepal Central Bureau of Statistics. (2019). Nepal Statistical Year Book 2019 (17th edition). <https://cbs.gov.np/wp-content/upLoads/2021/01/Statistical-Year-Book-of-Nepal-2019.pdf>
Nepal Telecommunications Authority. (2022). MIS Report. <https://nta.gov.np/wp-content/uploads/2022/03/MIS-POUSH-2078.pdf>
Phillips, T. B., Ballard, H. L., Lewenstein, B. v. and Bonney, R. (2019). Engagement in science through citizen science: moving beyond data collection. Science Education, 103(3), 665–690. <https://doi.org/10.1002/sce.21501>
Rawas, F., Bain, R. and Kumpel, E. (2020). Comparing utility-reported hours of piped water supply to households’ experiences. Npj Clean Water, 3(1). <https://doi.org/10.1038/s41545-020-0053-y>
Ray, I., Billava, N., Burt, Z., Colford, J. M., Ercümen, A., Jayaramu, K. P., Kumpel, E., Nayak, N., Nelson, K. and Woelfle-Erskine, C. (2018). From intermittent to continuous water supply a household-level evaluation of water system reforms in Hubli-Dharwad. Economic and Political Weekly, 53(49). <https://escholarship.org/uc/item/1qt9t6gq>
Remigio, R. v., Rabello, R. S., Zulaika, G., Carvalho, M. S., Barrocas, P. R. G. and Lovasi, G. S. (2019). Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro. Journal of Water Sanitation and Hygiene for Development, 9(1), 80–89. <https://doi.org/10.2166/washdev.2018.082>
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. v., Krasny, M. E. and Bonney, R. (2012). Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2). <https://doi.org/10.5751/ES-04705-170229>
Taylor, D. D. J., Slocum, A. H. and Whittle, A. J. (2019). Demand satisfaction as a framework for understanding intermittent water supply systems. Water Resources Research, 55(7), 5217–5237. <https://doi.org/10.1029/2018WR024124>
Totsuka, S., Trifunovi, N. and Vairavamoorthy, K. (2004). Intermittent urban water supply under water starving situations. 30th WEDC International Conference, Vientiane, Lao PDR, 505–512. <https://repository.lboro.ac.uk/articles/conference_contribution/Intermittent_urban_water_supply_under_water_starving_situations/9595109/files/17235365.pdf>
Vairavamoorthy, K. (2021). Closing the SDG access gap – the challenge of intermittent supply. The Source. 22 February. <https://www.thesourcemagazine.org/closing-the-sdg-access-gap-the-challenge-of-intermittent-supply/>
Vásquez, W. F., Mozumder, P., Hernández-Arce, J. and Berrens, R. P. (2009). Willingness to pay for safe drinking water: evidence from Parral, Mexico. Journal of Environmental Management, 90(11), 3391–3400. <https://doi.org/10.1016/j.jenvman.2009.05.009>
WHO. (2017). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization and the United Nations Children’s Fund. <http://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1>
- A call to action: organizational, professional, and personal change for gender transformative WASH programming
- Providing municipal faecal sludge management services: lessons from Bangladesh
- Menstrual hygiene management: education and empowerment for girls?
- Webwatch
- WASH challenges to girls’ menstrual hygiene management in Metro Manila, Masbate, and South Central Mindanao, Philippines