Technology challenging poverty

FRUIT JUICE PROCESSING

Introduction

A wide range of drinks can be made using extracted fruit juice or fruit pulp as the base material. Many are drunk as a pure juice without the addition of any other ingredients, but some are diluted with sugar syrup. The types of drink made from fruit can be separated into two basic types;

- those that are drunk straight after opening
- those that are used little by little from bottles which are stored between use.

The former groups should not require any preservative if they are processed and packaged properly. However, the latter group must contain a certain amount of permitted preservatives to have a long shelf-life after opening. The different types of drink are classified according to the following criteria:

Type	Description
Juices	Pure fruit juice with nothing added
Nectars	Normally contain 30\% fruit solids and are drunk immediately after opening
Squashes	Normally contain at least 25\% fruit pulp mixed with sugar syrup. They are diluted to taste with water and may contain preservatives
Cordials	Are crystal-clear squashes
Syrups	Are concentrated clear juices. They normally have a high sugar content

Each of the above products is preserved by a combination of natural acidity, pasteurisation and packaging in sealed containers. Some drinks (syrups and squashes) also contain a high concentration of sugar which helps to preserve them.

Equipment required

Peeler

Knives (stainless steel)
Cutting boards
Juice extractor
Thermometer
Analytical balance
Stainless steel saucepan
10kg scales
Cleaning equipment (brushes, scourers, cloths, hosepipes etc) 2 gas cylinders, 2- or 3- ring burners.

Building with large preparation table, smaller table for gas burners, shelves for products, sink, draining board, taps, cupboard for labels and dry ingredients.

The total capital for equipment and furnishings is likely to be £500-800 (\$US900-1440), working capital for fruit purchase, packaging and other materials is likely to be around $£ 600$ (\$US1080).

The cost of a building is not included, but it should have the following features:

- Sloping concrete floor and proper drainage for washing down each day
- A potable water supply
- Preferably electricity
- Screened windows and doors to reduce insects

Wooden spoons
Plastic funnels
Plastic buckets
Strainers

Practical Action, The Schumacher Centre, Bourton on Dunsmore, Rugby, Warwickshire, CV23 9QZ, UK T +44(0)1926634400 | F +44 (0)1926634401 | E infoserv@practicalaction.org.uk | W www.practicalaction.org

Practical Action is a registered charity and company limited by guarantee.
Company Reg. No. 871954, England I Reg. Charity No. 247257

- No horizontal ledges, window sills, or rafters where dust, insects and bird droppings can collect.

This technical brief outlines the basics of fruit juice processing. It does not give specific details or recipes for individual fruits. These can be found in the individual technical briefs (lime cordial, mixed fruit juice manufacture, passion fruit juice).

Method of production

For all the fruit based beverages, the first stage is the extraction of juice or pulp from the fruit. The following are the key manufacturing stages:

Selection and preparation of raw material

Juice extraction
Filtration (optional)
Batch preparation
Pasteurisation
Filling and bottling.
Any fruit can be used to make fruit juice, but the most common ones include pineapple, orange, grapefruit, mango and passion fruit. Some juices, such as guava juice, are not filtered after extraction and are sold as fruit nectars.

Preparation of raw material

Select mature, undamaged fruits. Any fruits that are mouldy or under-ripe should be sorted and removed. Wash the fruit in clean water. It may be necessary to chlorinate the water by adding 1 tablespoon of bleach to 5 litres of water. Peel the fruit and remove stones or seeds. If necessary, chop the fruit into pieces that will fit into the liquidiser or pulper. Remember that at this stage, you are exposing the clean flesh of the fruit to the external environment. Make sure that the utensils are clean. Do not leave the cut surfaces exposed to the air for long periods of time or they may start to turn brown and this will discolour the juice. The fruit pieces can be placed in water that contains lemon juice (250 ml lemon juice per litre of water) to stop them browning.

Juice extraction

There are several methods to extract juice depending on the type of fruit you use. For citrus fruits which are naturally juicy, the best option is to use a hand presser (see figure 1) or a revolving citrus 'rose'. Some fruits such as melon and papaya are steamed to release the juice. Apples are pressed and fruits such as mango, guava, soursop, pineapple, strawberry must be pulped to extract the juice. The fruit pieces are pushed through a perforated metal plate that crushes and turns them into a pulp. Some fruits can be pulped in a liquidiser and then filtered to remove the fruit pieces. There is a range of equipment available that varies in size and in the type of power supply (some are manual while the larger ones require electricity). For the small scale processor, the Mouli Legume or a hand-powered pulper/sieve which force the fruit pulp down through interchangeable metal strainers (figures 2 and 3) is sufficient.

Figure 1: Hand presser

At slightly higher production levels, it is necessary to use a power source to achieve a higher throughput of juice. The multi-purpose Kenwood Chef food mixer, is strongly recommended. This has a pulping attachment that is similar to the Mouli Legume and it can also be used for other operations such as liquidising and mixing.

Figure 2: Hand powered pulper

Figure 3: Hand powered pulper

For large-scale production, an industrial pulper-sieving machine is necessary. This also acts by forcing the fruit pulp through a fine cylindrical mesh. However, these cost in excess of $£ 2,500$.

Filtering

To make a clear juice, the extracted juice or pulp is filtered through a muslin cloth or a stainless steel filter. Some of the larger filter presses have a filter included. Although juice is naturally cloudy, some consumers prefer a clear product. It may be necessary to use pectic enzymes to break down the pectin and to help clear the juice. Pectic enzymes may be difficult to find and expensive and therefore should only be used if really necessary and readily available.

Batch preparation

When the juice or pulp has been collected, it is necessary to prepare the batch according to the chosen recipe. This is very much a matter of choice and judgement, and must be done carefully to suit local tastes. Juices are sold either pure or sweetened. Fruit squashes would normally contain about 25% fruit material mixed with a sugar syrup to give a final sugar concentration of about 40%. Squashes are diluted with water prior to use and, as the bottle is opened, partly used and then stored, it is necessary to add a preservative (for example 800ppm sodium benzoate).

Another popular product is fruit nectar, which is a sweet mixture of fruit pulp, sugar and water which is consumed on a 'one shot' basis. Essentially, these consist of a 30% mix of fruit pulp and sugar syrup to give a final sugar level of about 12-14\%.

All fruits contain sugar, usually around $8-10 \%$. The actual levels vary from fruit to fruit and with the stage of ripeness of the fruit. They also vary within the same fruit grown in different parts of the world. The addition of sugar to the fruit pulp to achieve the recommended levels for preservation must take into account the amount of sugar already present in the juice. It is important to achieve the minimum level that will prevent the growth of bacteria, however, once that level has been achieved, it is possible to add more if the consumers require a sweeter product. The amount of sugar added in practice is usually decided by what the purchasers actually want. The Pearson Square is a useful tool to use to help with batch formulation (see the appendix) and to calculate the amount of sugar to be added for preservation.

In all cases, sugar should be added to the fruit juice as a sugar syrup. The syrup should be filtered through a muslin cloth prior to mixing to remove particles of dirt which are always present. This gives a clearer, higher quality product.

Pasteurisation

All the products mentioned above need to be pasteurised at $80-95^{\circ} \mathrm{C}$ for $1-10$ minutes prior to hot-filling into bottles. At the simplest level, this may be carried out in a stainless steel, enamelled or aluminium saucepan over a gas flame, but this can result in localised overheating at the base of the pan, with consequent flavour changes.

Care is needed when producing pineapple juice due to a heat resistant enzyme in the juice. The enzyme damages skin after prolonged contact and workers should therefore wear gloves to protect their hands. The juice must be heated to a higher temperature for a longer time to destroy the enzyme (eg boiling for 20 minutes).

It is best to use stainless steel pans to heat fruit juice as the acidity of the juice can react with aluminium in aluminium pans during prolonged heating. However, large stainless steel pans are very expensive and may not be affordable by the small scale processors. To get round this
 problem, it is possible to use a large aluminium pan to boil the sugar syrup. The boiling syrup can then be added to a given amount of fruit juice in a small stainless steel pan. This increases the temperature of the juice to $60-70^{\circ} \mathrm{C}$. The juice/syrup mixture is then quickly heated to pasteurising temperature.

Bottle size (litres)	Pasteurisation time at $80^{\circ} \mathrm{C}$ (minutes)
0.33	10
0.5	15
0.75	20

Table 1: Pasteurisation times at $80^{\circ} \mathrm{C}$ for different bottle sizes
Another option is to pasteurise the juices once they have been bottled. The bottles are placed in a hot water bath which is heated to $80^{\circ} \mathrm{C}$. The bottles are held in the hot water for the given amount of time until the contents reach the desired temperature. The length of time required in the water bath depends on the size and volume of the bottles (see table 1). A thermometer should be placed in one of the bottles, which is used as a test bottle per batch, to monitor the temperature and to ensure that the correct temperature has been reached. This method of pasteurisation has benefits but also has problems.

Benefits	Problems
Juice is pasteurised within the bottle so the chance for re-contamination of the juice is reduced	Difficult to ensure the internal temperature of the bottles reaches the desired pasteurising temperature
No need for large stainless steel pans for pasteurisation	Require glass bottles for pasteurising

Table 2: The pros and cons of pasteurising within after bottling
The next industrial jump in pasteurisation is an expensive option that involves the purchase of a double-jacketed steam kettle in stainless steel and a small boiler. The total cost is likely to be in the region of $£ 5-10,000$, which is only viable for larger scale operations.

Filling and bottling

In all cases, the products should be hot-filled into clean, sterilised bottles. A stainless steel bucket, drilled to accept a small outlet tap, is a very effective bottle filler. The output can be doubled quite simply by fitting a second tap on the other side of the bucket. This system has been used to produce 500-600 bottles of fruit juice per day in the West Indies.

After filling hot, the bottles are capped and laid on their sides to cool prior to labelling.

Quality control

The freshness and quality of the expressed fruit juice is central to the quality of the final product. As soon as the juice is expressed from the fruit it starts to deteriorate, both as a result of chemical activity (enzyme action) and bacterial spoilage. It is important to move from the juice extraction stage to pasteurisation as quickly as possible to minimise any spoilage.

Extracted fruit juice that is left to stand for long periods in the heat will start to ferment and may start to discolour due to enzyme activity. The juice should be stored in a refrigerator (if one is available) or in a cool place and away from the direct sunlight. It should be collected into a clean, sterile container (food grade plastic buckets is the best option) and covered to keep out dirt, dust and insects. For the best quality product ,it is essential to work quickly between the extraction of the juice and the bottling stage. The longer the juice is out of the bottles, the more chance there is of contamination.

As in all food processing enterprises it is necessary to ensure that the fruit products are correctly formulated and priced to meet the customer's requirements, and that production costs are minimised to ensure that a profit is made. The quality of each day's production should be monitored and controlled to ensure that every bottle of juice has the correct keeping and drinking qualities. In particular the following points should be observed:

- Only fresh, fully ripe fruit should be used; mouldy or insect damaged fruit should be thrown away. All unwanted parts (dirt, skins, stones etc) should be removed.
- All equipment, surfaces and floors should be thoroughly cleaned after each day's production.
- Water quality is critical. If in doubt use boiled water or add one tablespoon of bleach to 5 litres of water to sterilise it. If water is cloudy, a water filter should be used.
- Pay particular attention to the quality of re-usable bottles, check for cracks, chips etc and wash thoroughly before using. Always use new caps or lids.
- The concentration of preservative should be carefully controlled for correct preservation of squashes and cordials, and may be subject to local laws. Check first and use accurate scales to measure the preservative.
- The temperature and time of heating are critical for achieving both the correct shelf life of the drink and retaining a good colour and flavour. A thermometer and clock are therefore needed.
- The correct weight should be filled into the bottles each time.

These factors are important because a customer will stop buying the products if the quality varies with each purchase.

The use of chemical preservatives in fruit juices and fruit drinks

As the name suggests, pure fruit juice is solely the extracted juice of fruit and should not have any preservative, or any other ingredients (such as sugar) added.

Fruit drinks that are not consumed in one go can have preservatives added to help prolong the shelf life once they have been opened.

There are several chemical preservatives that can be added to fruit juices. Processors need to check with local authorities or standards agencies to find the maximum permitted levels.

Compound	Comments	Commonly used levels
Sulphites and sulphur dioxide	Sulphur dioxide gas and the sodium or potassium salts of sulphite, bisulphite or metabisulphite are the most commonly used forms. Sulphurous acid inhibits yeasts, moulds and bacteria. Sulphur dioxide is mainly used to preserve the colour of fruits during drying.	$0.005-0.2 \%$
Sorbic acid	Sorbic acid and sodium and potassium sorbate are widely used to inhibit the growth of moulds and yeasts. The activity of sorbic acid increases as the pH decreases. Sorbic acid and its salts are practically tasteless and odourless in foods when used at levels less than 0.3\%.	$0.05-0.2$
Benzoic acid	Benzoic acid, in the form of sodium benzoate is a widely used preservative. It occurs naturally in cranberries, cinnamon and cloves and is well suited for used in acid foods. It is often used in combination with sorbic acid at levels from 0.05-0.1\% by weight.	$0.03-0.2 \%$
Citric acid	Citric acid is the main acid found naturally in citrus fruits. It is widely used in carbonated beverages and as an acidifier of foods. It is a less effective anti-microbial agent than other acids.	No limit

Table 3: Permitted preservatives used in fruit juices and beverages.

Equipment suppliers

Note: This is a selective list of suppliers and does not imply endorsement by Practical Action.

Juice extractors and pulpers

A variety of juice extractors and pulpers is available from a wide range of suppliers. They are available in different capacities and either manual or powered (either electric of diesel).

Kenwood Limited

New Lane
Havant
Hampshire, PO9 2NH
United Kingdom
Tel: +44 (0) 2392476000
Fax: +44 (0) 2392392400
Website: http://www.kenwood.co.uk

Buhler (India) Pvt Ltd
13-D, K A I D B Industrial Area, Attibele
Bangalore
Karnataka 562107
India
Tel: +91 80-27820000
Fax: +91 80-7820001
Website: www.buhlergroup.com

Alvan Blanch

Chelworth

Malmesbury
Wiltshire, SN16 9SG
United Kingdom
Tel: +44 (0) 666577333
Fax: +44 (0) 666577339
E-mail: info@alvanblanch.co.uk
Website: http://www.alvanblanch.co.uk

Lehman Hardware and Appliances Inc.
P.O. Box 41

Kidron
Ohio 44636
USA
Tel orders: +1 8774385346
Tel enquiries: +1 8884385346
E-mail: info@lehmans.com
Website: http://www.lehmans.com

Robot Coupe

12 Avenue Cal Leclerc
BP 134
71303 Montceau-les-Mines
France
Tel: +33 385588080

DISEG (Diseno Industrial y Servicios Generales)
Av Jose Carlos Mariategui 1256
Villa Maria del Triunfo
Lima
Peru
Tel: +51 142831417

Servifabri SA

JR Alberto Aberd
No. 400 Urb Miguel Grau (ex Pinote)
San Martin de Porres
Lima
Peru
Tel: +51 144811967

Gardners Corporation

158 Golf Links
New Delhi 110003
India
Tel: +91 112334 4287/2336 3640
Fax: +91 1123717179

Food Packs Indiana

Thrikkariyoor, Kothamangalam, Ernakulam
Kerala 686692
India
Tel: +91 485-2522134, 2523610

Geeta Food Engineering

Plot No C-7/1 TTC Area
Pawana MIDC Thane Belapur Road
BehindDavita Chemicals Ltd
Navi Mumbai 400705
India
Tel: +91 222782 6626/2766 2098
Fax: +91 2227826337

Delhi Industries
4 Paharganj Lane,
New Delhi 110055
India
Tel: +91 11 2529720, 27525200, 27536888
Fax: +91 1125791291

Do-All-Engineering Industries

87/12, Industrial Suburb, Yeshawanthpur
Bangalore
Karnataka 560022
India
Tel: +91 8023345754,23372298
Fax: +91 8023346138

Eastend Engineering Company

173/1 Gopal Lal Thakur Road
Calcutta 700035
India
Tel: +91 3325536397

Florachem

Flat No. 1119, Hemkunt Chambers, 89, Nehru Place
New Delhi 110019
India
Tel: +91 1125589502

Praj Industries Ltd
Praj House Bavdhan
Pune, Maharashtra 411021
India
Tel: +91 20-22951511, 22952214
Fax: +91 20-22951511 / 22952214
Website: www.praj.net

Techno Equipments

Saraswati Sadan
$1^{\text {st }}$ Floor, 31 Parekh Street
Mumbai 400004
India
Tel: +91 2223851258

Kundasala Engineers

Digana Road
Kundasala
Kandy
Sri Lanka
Tel: +94 8420482

Narangs Corporation

P-25 Connaught Place
New Delhi 110001
India
Tel: +91 1123363547
Fax: +91 1123746705

Udaya Industries

Uda Aludeniya, Welligalla
Gampola
Sri Lanka
Tel: +94 8388586
Fax: +94 8388909

For pasteurisation

Boiling pans should be made of aluminium, enamelled metal or stainless steel. For larger quantities it is necessary to buy equipment which does not cause burning or sticking of the product to the bottom of the pan.

Stainless steel steam jacketed kettles, which are double walled pans are suitable for pasteurising juice and are available in a range of sizes (from 5 to 500litres). Tubular heat exchangers are also suitable for pasteurisation, but are more expensive.

Gardners Corporation
India (See above

Raylons Metal Works

Kondivita Lane
J. B. Nagar Post Office

Post Box No. 17426
Andheri (E) Andheri - Kurla Road,
Mumbai - 400059
India
Tel: +91 2226323288 / 6325932

Israel Newton Limited
Summerley Works
All Alone Road
Bradford
West Yorkshire, BD10 8TT
United Kingdom
Tel: +44 (0)1274 612059
Fax: +44 (0)1274 612059

APV Baker Limited
Manor Drive
Paston Parkway
Peterborough
Cambridgeshire, PE4 7AP
United Kingdom
Tel: +44 (0)1733 283000
Fax: +44 (0)1733 283005

Sri Rajalakshmi Commercial Kitchen Equipment No.57, (old No. 30/1) Silver Jubilee Park Road Bangalore - 560002
India
Tel: +91 (0)812 2222 1054/223 9738
Fax: +91 (0)812 22222047

United Engineering (Eastern) Corporation
Shantiniketan Site No. 2 \& 3
($10^{\text {th }}$ Floor) 8 Camac Street
Kolkata, West Bengal 700017
India
Tel: +91 33-22823914, 22820157
Fax: +91 33-22823742

Alvan Blanch
United Kingdom (See above)

T Giusti and Son Limited

Rixon Road, Finedon Road Industrial Estate Wellingborough,
Northamptonshire, NN8 4BA
United Kingdom
Tel: + 44 (0)1933 229933
Fax: + 44 (0)1933 272363
Website: www.giusti.co.uk

Autopack Machines Pvt Ltd
101-C Poonam Cambers
A Wing, $1^{\text {st }}$ Floor
Dr Annie Besant Road, Worli
Mumbai 400018
India
Tel: +91 222493 4406/2497 4800/2492 4806
Fax: +91 2224964926
E-mail: autopack@bom3.vsml.net.in
www.autopackmachines.com

Bombay Engineering Industry

R NO 6 (Extn) Sevantibai Bhavan
Chimatpada
Marol Naka Andheri (East)
Mumbai 400059
India
Tel: +91 222836 9368/2821 5795
Fax: +91 2224135828

Gurdeep Packaging Machines

Harichand Mill compound
LBS Marg, Vikhrol
Mumbai 400079
India
Tel: +91 222578 3521/577 5846/579 5982
Fax: +91 2225772846

Gardners Corporation

India (see above
Rank and Company
A-p6/3, Wazirpur Industrial Estate
Delhi - 110052
India
Tel: +91 1127376101
Fax: +91 117234126
Rank@poboxes.com

Narangs Corporation
India (see above)

Mark Industries (Pvt) Ltd
Bangladesh (See above)

Alfa Technology Transfer Centre
301 Cach Mang Thang 8
Tan Binh District
Ho Chi Minh City
Vietnam
Tel: +84 89700868
Fax: +84 88640252

Orbit Equipments Pvt Ltd
175 - B, Plassy Lane
Bowenpally
Secunderabad - 500011, Andhra Pradesh
India
Tel: +91 4032504222
Fax: +914027742638
Website : http://www.orbitequipments.com

John Kojo Arthur

University of Science and Technology
Kumasi
Ghana

Pharmaco Machines

Unit No. 4, S.No. 25 A
Opp Savali Dhaba, Nr.Indo-Max
Nanded Phata, Off Sinhagad Rd.
Pune-411041, India
Tel: +91 2065706009
Fax: +91 2024393377

Technology and Equipment Development Centre (LIDUTA)
360 Bis Ben Van Don St
District 4
Ho Chi Minh City
Vietnam
Tel: +84 89400906
Fax: +84 89400906

Banyong Engineering

94 Moo 4 Sukhaphibaon No 2 Rd
Industrial Estate Bangchan
Bankapi
Thailand
Tel: +66 2 5179215-9

Alvan Blanch
UK (see above)

Refractometers

The refractometer is used to measure the sugar content.

Bellingham + Stanley Ltd.
Longfield Road, North Farm Industrial Estate Tunbridge Wells, Kent TN2 3EY
United Kingdom
Tel: +44 1892500400
Fax: +44 1892543115
E-mail: sales@bs-Itd.com
Website: http://www.bs-Itd.com

Gardners Corporation
India (see above)

Fisher Scientific UK Ltd
Bishop Meadow Road
Loughborough
LE11 5RG
UK
Tel: +44 1509231166
Fax: +44 1509231893
Email: fisher@fisher.co.uk
Web: www.fisher.co.uk
International Ripening Company
1185 Pnieridge Road
Norfoplk
Virginia 23502-2095
USA
Tel: +1 7578553094
Fax: +1 7578554155
Email: info@QAsupplies.com
Web: www.qasupplies.com

-

References and further reading

Practical Action Technical Briefs (Juices)

- Mixed fruit juice manufacture
- Lime juice
- Lime cordial
- Nas naran lime juice
- Passion fruit juice

Small-scale processing of ready to drink pineapple juice. Food Chain No 27
Principles and practices of small and medium-scale fruit juice processing. FAO Agricultural Services Bulletin 146, Food and Agriculture Organization of the United Nations (FAO), (2001). Technical manual on small-scale processing of fruits and vegetables, Food and Agriculture Organization of the United Nations (FAO)
Setting up and Running a Small Fruit or Vegetable Processing Enterprise: Opportunities in Food Processing CTA
Starting a Small Food Processing Enterprise by Peter Fellows, Ernesto Franco \& Walter Rios Practical Action Publishing/CTA 1996
Small Scale Food Processing 2 ${ }^{\text {nd }}$ Ed. P Fellows \& S Azam Ali, Practical Action Publishing, 2003 Fruit and Vegetable Processing UNIFEM Practical Action Publishing, 1993

This document was produced by Dr. S. Azam Ali for Practical Action in March 2008. Dr. S Azam-Ali is a consultant in food processing and nutrition with over 15 years' experience of working with small-scale processors in developing countries.

Practical Action

The Schumacher Centre
Bourton-on-Dunsmore
Rugby, Warwickshire, CV23 9QZ
United Kingdom
Tel: +44 (0)1926 634400
Fax: +44 (0)1926 634401
E-mail: inforserv@practicalaction.org.uk
Website: http://www.practicalaction.org/
Practical Action is a development charity with a difference. We know the simplest ideas can have the most profound, life-changing effect on poor people across the world. For over 40 years, we have been working closely with some of the world's poorest people - using simple technology to fight poverty and transform their lives for the better. We currently work in 15 countries in Africa, South Asia and Latin America.

Appendix - The Pearson Square

The Pearson Square is a method that processors can use to calculate the amounts of two components that should be mixed together to give a final known concentration.
For example, it can be used to calculate the amounts of fruit pulp and sugar syrup to make a fruit drink. The method can only be used for blending two components. When more than two components are involved, it becomes more complex.

Example of how to use the Pearson Square
You wish to produce a sweetened fruit juice with a final sugar content of 15%. You use orange juice (that contains 10% sugar), mixed with a 60% sugar syrup (that contains 60% sugar).

1. Draw a rectangle and label the two horizontal lines with the names of the two products to be blended (fruit juice and sugar syrup)

Orange juice

Sugar syrup
2. Enter the sugar composition of each product in the rectangle as shown below and put the desired final concentration of sugar in the centre of the box:

Orange juice

Sugar syrup
3. Mix the two components by crossing diagonally through the centre of the rectangle.

Orange juice

Sugar syrup
4. Following the arrows, subtract the smaller number from the larger one to give two new numbers (45 and 5) in the opposite corners of the rectangle. These numbers (45% orange juice and 5% sugar syrup) are the amounts that need to be mixed to give a fruit drink with a final sugar concentration of 15%.

